Baliga, B. Jayant.

The IGBT Device : Physics, Design and Applications of the Insulated Gate Bipolar Transistor. - 2nd ed. - 1 online resource (802 pages)

Intro -- The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor -- Copyright -- Dedication -- Contents -- About the Author -- Foreword -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1: Introduction -- 1.1. IGBT Applications Spectrum -- 1.2. Basic IGBT Device Structures -- 1.3. IGBT Development and Commercialization History -- 1.4. Scaling of Power Ratings -- 1.5. Summary -- References -- Chapter 2: IGBT Structure and Operation -- 2.1. Symmetric D-MOS Structure -- 2.2. Asymmetric D-MOS Structure -- 2.3. Trench-Gate IGBT Structure -- 2.4. Transparent Emitter IGBT Structure -- 2.5. Novel IGBT Structures -- 2.6. Lateral IGBT Structures -- 2.7. Complementary IGBT Structures -- 2.8. Advanced IGBT Structures -- 2.9. Summary -- References -- Chapter 3: IGBT Structural Design -- 3.1. Threshold Voltage -- 3.2. Symmetric IGBT Structure -- 3.2.1. Blocking Voltage -- 3.2.2. On-State Characteristics -- 3.2.3. Stored Charge -- 3.2.4. Turn-Off Switching Waveforms -- 3.2.5. Turn-Off Power Loss -- 3.2.6. Power Loss Trade-Off Curve -- 3.3. Asymmetric IGBT Structure -- 3.3.1. Blocking Voltage -- 3.3.2. On-State Characteristics -- 3.3.3. Stored Charge -- 3.3.4. Turn-Off Switching Waveforms -- 3.3.5. Turn-Off Power Loss -- 3.3.6. Power Loss Trade-Off Curve -- 3.4. Transparent Emitter IGBT Structure -- 3.4.1. Blocking Voltage -- 3.4.2. On-State Characteristics -- 3.4.3. Stored Charge -- 3.4.4. Turn-Off Switching Waveforms -- 3.4.5. Turn-Off Power Loss -- 3.4.6. Power Loss Trade-Off Curve -- 3.5. Silicon Carbide IGBT Structures -- 3.5.1. N-Channel Asymmetric SiC IGBT Structure -- 3.5.2. Blocking Characteristics -- 3.5.3. On-State Voltage Drop -- 3.5.4. Turn-Off Characteristics -- 3.5.5. Switching Energy Loss per Cycle -- 3.6. Optimum SiC Asymmetric IGBT Structure -- 3.6.1. Optimum Structure Design. 3.6.2. On-State Voltage Drop -- 3.6.3. Turn-Off Characteristics -- 3.6.4. Power Loss Trade-Off Curves -- 3.6.5. Maximum Operating Frequency -- 3.7. Summary -- References -- Chapter 4: Safe Operating Area Design -- 4.1. Parasitic Thyristor -- 4.2. Suppressing the Parasitic Thyristor -- 4.2.1. Deep P+ Diffusion -- 4.2.2. Reducing Gate Oxide Thickness -- 4.2.3. Diverter Structure -- 4.2.4. Cell Topology -- 4.2.4.1. Square window in a square array -- 4.2.4.2. Circular window in a hexagonal array -- 4.2.4.3. Atomic lattice layout -- 4.2.5. Latch-Up Proof Structure -- 4.3. Safe Operating Area -- 4.3.1. Forward-Biased SOA -- 4.3.2. Reverse Biased SOA -- 4.3.3. Short Circuit SOA -- 4.4. Novel Silicon Device Structures -- 4.5. Silicon Carbide Devices -- 4.6. Summary -- References -- Chapter 5: Chip Design, Protection, and Fabrication -- 5.1. Active Area -- 5.2. Gate Pad Design -- 5.3. Edge Termination Design -- 5.4. Integrated Sensors -- 5.4.1. Overcurrent Protection -- 5.4.2. Overvoltage Protection -- 5.4.3. Overtemperature Protection -- 5.5. Planar-Gate Device Fabrication Process -- 5.6. Trench-Gate Device Fabrication Process -- 5.7. Lifetime Control -- 5.8. Summary -- References -- Chapter 6: Package and Module Design -- 6.1. Discrete Device Package -- 6.2. Improved Discrete Device Package -- 6.3. Basic Power Module -- 6.4. Flat-Pack Power Module -- 6.5. Metal Baseplate Free Power Module -- 6.6. Smart Power Modules -- 6.6.1. Dual In-Line Packages -- 6.6.2. Intelligent Power Modules -- 6.7. Reliability -- 6.8. Summary -- References -- Chapter 7: Gate Drive Circuit Design -- 7.1. Basic Gate Drive -- 7.2. Asymmetric Gate Drive -- 7.3. Two-Stage Gate Drive -- 7.4. Active Gate Voltage Control -- 7.5. Variable Gate Resistance Drive -- 7.6. Digital Gate Drive -- 7.7. Short Circuit Protection -- 7.8. Magnetically Coupled Gate Drive -- 7.9. Posicast Gate Drive. 7.10. EMI Reduction Gate Drive -- 7.11. The BaSIC Topology -- 7.12. Summary -- References -- Chapter 8: IGBT Circuit Models -- 8.1. Physics-Based Circuit Model -- 8.1.1. SABER NPT-IGBT Circuit Model -- 8.1.2. SABER PT-IGBT Circuit Model -- 8.1.3. SABER IGBT Electrothermal Circuit Model -- 8.1.4. SABER IGBT1 Model -- 8.2. IGBT Analog Behavioral Model -- 8.3. Model Parameter Extraction -- 8.4. Summary -- References -- Chapter 9: IGBT Applications: Transportation -- 9.1. Gasoline-Powered Vehicles -- 9.1.1. Kettering Mechanical Ignition System -- 9.1.2. Electronic Ignition System -- 9.1.3. Ignition IGBT Design -- 9.1.4. Dual-Voltage Clamped Ignition IGBT Design -- 9.1.5. Smart Ignition IGBT Design -- 9.1.6. Ignition IGBT Products -- 9.2. Auxiliary Automotive Drives -- 9.3. Electric and Hybrid Electric Vehicles -- 9.3.1. EV Inverter Design -- 9.3.2. EV IGBT Chip Design -- 9.3.3. EV Regenerative Breaking -- 9.4. EV Charging Stations -- 9.4.1. EV Charging Requirements -- 9.4.2. EV Charging Circuit -- 9.4.3. Modern EV Charging Station -- 9.5. Electric Transit Bus -- 9.5.1. Electric Bus Control Circuits -- 9.5.2. Electric Bus Charging -- 9.5.3. Inductive Electric Bus Charging -- 9.6. Electric Trams and Trolleys -- 9.7. Subway and Airport Trains -- 9.8. Electric Locomotives -- 9.8.1. DC Power Bus -- 9.8.2. AC Power Bus -- 9.8.3. Multisystem Electric Trains -- 9.9. Diesel-Electric Locomotives -- 9.10. High-Speed Electric Trains -- 9.10.1. Motor Drive Topology -- 9.10.2. IGBT Module Design -- 9.11. Freight Trains -- 9.12. Marine Propulsion -- 9.12.1. Ro-Ro Ships -- 9.12.2. Cruise Ships -- 9.12.3. LNG Carriers -- 9.12.4. Circuit Breakers for Ships -- 9.13. More Electric Aircraft -- 9.13.1. DC-DC Converter -- 9.13.2. DC-AC Inverter -- 9.13.3. Electromechanical Aircraft Rudder Actuator -- 9.13.4. Brushless DC Motor Drives -- 9.14. All-Electric Aircraft. 9.14.1. Civil Tilt Rotorcraft -- 9.14.2. ANPC Inverter Drive -- 9.14.3. Passenger Drones -- 9.15. IGBT Modules for Aircraft Applications -- 9.16. IGBT Cosmic Ray Failures -- 9.17. Summary -- References -- Chapter 10: IGBT Applications: Industrial -- 10.1. Industrial Motor Drives -- 10.2. Adjustable Speed Drives for Motor Control -- 10.3. Pulse Width Modulated ASD -- 10.3.1. PWM Waveforms -- 10.3.2. Power Loss Trade-Off Curves -- 10.3.3. Power Loss Analysis -- 10.4. Factory Automation -- 10.4.1. Complementary IGBTs -- 10.4.2. p-Channel IGBT Design -- 10.5. Robotics -- 10.5.1. Cableless Power Supply -- 10.5.2. Industrial Robot Controller -- 10.5.3. Linear Actuators -- 10.5.4. Mobile Gantry Crane Robots -- 10.6. Welding -- 10.6.1. Step-Down Buck Converter -- 10.6.2. Transformer-Coupled Power Supply -- 10.6.3. Dual Utility Power Supply -- 10.6.4. Robot Arc Welding -- 10.6.5. Consumable Electrode Welding -- 10.6.6. IGBT Optimization for Welding -- 10.7. Induction Heating -- 10.7.1. Forging, Annealing, and Tube/Pipe Welding -- 10.7.2. Fluid Heating -- 10.7.3. Metal Melting Furnace -- 10.7.4. IGBT Design for Induction Heating -- 10.8. Milling and Drilling Machines -- 10.8.1. High-Speed Milling Machine -- 10.8.2. High-Speed Drilling Machine -- 10.8.3. High-Speed Electrical Discharge Machining -- 10.9. Metal and Paper Mills -- 10.9.1. Metals Industries -- 10.9.2. Pulp and Paper Industries -- 10.10. Electrostatic Precipitators -- 10.11. Textile Mills -- 10.12. Mining and Excavation -- 10.13. IGBT Optimization for Industrial Applications -- 10.14. Low Power IPM -- 10.15. Dead-Time Compensation -- 10.16. Hybrid Si IGBT/SiC MOSFET Switches -- 10.17. Summary -- References -- Chapter 11: IGBT Applications: Lighting -- 11.1. TRIAD Incandescent Lamps -- 11.2. Compact Fluorescent Lamps -- 11.2.1. CFL Light Emission -- 11.2.2. Half-Bridge Ballast Topology. 11.2.3. Power Transistor Comparison -- 11.2.4. Self-Resonant Ballast Topology -- 11.2.5. Power Factor Correction -- 11.2.6. Discrete IGBT Designs for CFLs -- 11.2.7. Integrated IGBT Designs for CFLs -- 11.3. Light-Emitting Diodes -- 11.3.1. LED Driver -- 11.3.2. Conventional LED Driver -- 11.3.3. Multiple Series/Parallel LED Driver -- 11.3.4. Conducted EMI -- 11.4. Strobe Flash Light -- 11.4.1. Strobe Flash Circuit -- 11.4.2. IGBT Design for Strobe Light -- 11.4.3. Professional Flash -- 11.5. Xenon Short Arc Lamps -- 11.5.1. Automobile Headlights -- 11.5.2. Movie Theater Projectors -- 11.6. Stroboscopic Imaging -- 11.7. Dimmable Luminaries -- 11.8. Rapid Thermal Annealing -- 11.9. LED-Based Endoscopy -- 11.10. Summary -- References -- Chapter 12: IGBT Applications: Consumer -- 12.1. Large Appliances -- 12.1.1. Air Conditioners (Heat Pumps) -- 12.1.2. Refrigerators -- 12.1.3. Washing Machine -- 12.1.4. Microwave Oven -- 12.1.5. Induction Cooktop Range -- 12.1.6. Dishwasher -- 12.2. Small Appliances -- 12.2.1. Portable Induction Cooktop and Rice Cooker -- 12.2.2. Food Processors (Blenders, Juice Makers, Mixers) -- 12.2.3. Vacuum Cleaners -- 12.3. Television -- 12.3.1. TV Sets With CRTs -- 12.3.2. Plasma TV Sets -- 12.3.3. Preregulator Circuit -- 12.4. IGBT Design Optimization for Consumer Applications -- 12.4.1. IGBT Optimization for Motor Drives -- 12.4.2. IGBT Optimization for Induction Cooking -- 12.4.3. IGBT Optimization for TV Sets -- 12.4.4. IGBT Optimization for Power Factor Correction -- 12.5. Summary -- References -- Chapter 13: IGBT Applications: Medical -- 13.1. X-Ray Machine -- 13.1.1. Series-Parallel Resonant Power Supply -- 13.1.2. Dual-Mode Power Supply -- 13.2. Computed Tomography -- 13.2.1. PWM-Resonant Converter Power Supply -- 13.2.2. Resonant Inverter Power Supply in Rotating Gantry. 13.2.3. Resonant Inverter Power Supply in Stationary Gantry.

9780323917148


Insulated gate bipolar transistors.


Electronic books.