000 | 03523nam a22004453i 4500 | ||
---|---|---|---|
001 | EBC6963478 | ||
003 | MiAaPQ | ||
005 | 20250821101107.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 250807s2022 xx o ||||0 eng d | ||
020 |
_a9783030909871 _q(electronic bk.) |
||
020 | _z9783030909864 | ||
035 | _a(MiAaPQ)EBC6963478 | ||
035 | _a(Au-PeEL)EBL6963478 | ||
035 | _a(OCoLC)1313386673 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
100 | 1 | _aBetti, Alessandro. | |
245 | 1 | 0 |
_aDeep Learning to See : _bTowards New Foundations of Computer Vision. |
250 | _a1st ed. | ||
264 | 1 |
_aCham : _bSpringer International Publishing AG, _c2022. |
|
264 | 4 | _c�2022. | |
300 | _a1 online resource (116 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aSpringerBriefs in Computer Science Series | |
505 | 0 | _aIntro -- Preface -- Acknowledgements -- Contents -- 1 Motion Is the Protagonist of Vision -- 1.1 Introduction -- 1.2 The Big Picture -- 1.3 Supervised Learning Is an Artificial Learning Protocol -- 1.4 Cutting the Umbilical Cord with Pattern Recognition -- 1.5 Dealing with Video Instead of Images -- 1.6 Ten Questions for a Theory of Vision -- 2 Focus of Attention -- 2.1 Introduction -- 2.2 How Can Humans Perform Pixel Semantic Labeling? -- 2.3 Insights from Evolution of the Animal Visual System -- 2.4 Why Focus of Attention? -- 2.5 What Drives Eye Movements? -- 2.6 The Virtuous Loop of Focus of Attention -- 3 Principles of Motion Invariance -- 3.1 Introduction -- 3.2 Computational Models in Spatiotemporal Environments -- 3.3 Object Identity and Affordance -- 3.4 From Material Points to Pixels -- 3.5 The Principle of Material Point Invariance -- 3.6 The Principle of Coupled Motion Invariance -- 3.7 Coupling of Vision Fields -- 4 Foveated Neural Networks -- 4.1 Introduction -- 4.2 Why Receptive Fields and Hierarchical Architectures? -- 4.3 Why Two Different Mainstreams? -- 4.4 Foveated Nets and Variable Resolution -- 5 Information-Based Laws of Feature Learning -- 5.1 The Simplest Case of Feature Conjugation -- 5.2 Neural Network Representation of the Velocity Field -- 5.3 A Dynamic Model for Conjugate Features and Velocities -- 5.4 Online Learning -- 5.5 Online Learning: An Optimal Control Theory Prospective -- 5.6 Why is Baby Vision Blurred? -- 6 Non-visual Environmental Interactions -- 6.1 Object Recognition and Related Visual Skills -- 6.2 What Is the Interplay with Language? -- 6.3 The ``en Plein Air'' Perspective -- Appendix A Calculus of Variations -- A.1 Integral Functional and Euler Equations -- Appendix References -- -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2025. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aComputer vision. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aGori, Marco. | |
700 | 1 | _aMelacci, Stefano. | |
776 | 0 | 8 |
_iPrint version: _aBetti, Alessandro _tDeep Learning to See _dCham : Springer International Publishing AG,c2022 _z9783030909864 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aSpringerBriefs in Computer Science Series | |
856 | 4 | 0 |
_uhttps://ebookcentral-proquest-com.mlisicats.remotexs.co/lib/ppks/detail.action?docID=6963478&query=9783030909871 _zClick to View |
942 |
_2lcc _cEB |
||
999 |
_c1954 _d1954 |